import sys
from bisect import bisect_right, bisect_left
import os
import sys
from io import BytesIO, IOBase
from math import factorial, floor, sqrt, inf, ceil, gcd
from collections import defaultdict, deque, Counter
from functools import cmp_to_key
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
def inp():
return(int(input()))
def inlt():
return(list(map(int,input().split())))
def insr():
s = input()
return(s[:len(s) - 1])
def invr():
return(map(int,input().split()))
def insr2():
s = input()
return(s.split(" "))
def build_mod_inverses(n, r, p):
fact = [1] * (n + 1)
for i in range(1, n + 1):
fact[i] = i * fact[i - 1] % p
inv = [1] * (n + 1)
inv[n] = pow(fact[n], p - 2, p)
for i in range(n - 1, -1, -1):
inv[i] = (i + 1) * inv[i + 1] % p
return fact, inv
def comb(n, r, p, fact, inv):
return fact[n] * inv[r] % p * inv[n - r] % p if n >= r >= 0 else 0
def make_divisors(n):
divisors = []
for i in range(1, int(n**0.5)+1):
if n % i == 0:
divisors.append(i)
if i != n // i and i != 1:
divisors.append(n // i)
return divisors
def dfs(graph, vertex):
visited = set()
tree = []
deq = deque([vertex])
while deq:
vertex = deq.pop()
if vertex not in visited:
visited.add(vertex)
deq.extend(graph[vertex])
tree.append(vertex)
return tree
def find_in_sorted_list(elem, sorted_list):
'Locate the leftmost value exactly equal to x'
i = bisect_left(sorted_list, elem)
if i != len(sorted_list) and sorted_list[i] == elem:
return i
return -1
class SegmentTree:
def __init__(self, data, default=0, func=lambda a, b: a+b):
self._default = default
self._func = func
self._len = len(data)
self._size = _size = 1 << (self._len - 1).bit_length()
self.data = [default] * (2 * _size)
self.data[_size:_size + self._len] = data
for i in reversed(range(_size)):
self.data[i] = func(self.data[i + i], self.data[i + i + 1])
def __delitem__(self, idx):
self[idx] = self._default
def __getitem__(self, idx):
return self.data[idx + self._size]
def __setitem__(self, idx, value):
idx += self._size
self.data[idx] = value
idx >>= 1
while idx:
self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
idx >>= 1
def __len__(self):
return self._len
def query(self, start, stop):
if start == stop:
return self.__getitem__(start)
start += self._size
stop += self._size
res = self._default
while start < stop:
if start & 1:
res = self._func(res, self.data[start])
start += 1
if stop & 1:
stop -= 1
res = self._func(res, self.data[stop])
start >>= 1
stop >>= 1
return res
def __repr__(self):
return "SegmentTree({0})".format(self.data)
n, x = inlt()
depth = 0
start = (x, depth)
visited = set()
if set(str(x)) == set('1') or set(str(x)) == set('0') or set(str(x)) == set(['1', '0']):
print(-1)
sys.exit()
deq = deque([start])
while deq:
vertex = deq.popleft()
if vertex not in visited:
visited.add(vertex)
if len(str(vertex[0])) >= n:
print(vertex[1])
sys.exit()
for num in str(vertex[0]):
val = vertex[0] * int(num)
depth = vertex[1]+1
deq.append((val, depth))
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<ll,ll>mp;
int solve(int targetLength, long long value)
{
string s=to_string(value);
//cout<<s<<endl;
//base case
if(s.length()>=targetLength)
{
return 0;
}
// result already calculated
if(mp[value]!=0)
{
return mp[value];
}
int mn=5000;
for(int i=0; i<s.length(); i++)
{
if(s[i]!='0' && s[i]!='1')
{
mn= min( mn, 1+ solve(targetLength, value * (s[i]-'0')) );
}
}
return mp[value]=mn;
}
int main()
{
long long n,x;
cin>>n>>x;
int ans=solve(n,x);
if(ans>=1000){
cout<<-1<<endl;
return 0;
}
cout<<ans<<endl;
return 0;
}
1665D - GCD Guess | 29A - Spit Problem |
1097B - Petr and a Combination Lock | 92A - Chips |
1665B - Array Cloning Technique | 1665A - GCD vs LCM |
118D - Caesar's Legions | 1598A - Computer Game |
1605A - AM Deviation | 1461A - String Generation |
1585B - Array Eversion | 1661C - Water the Trees |
1459A - Red-Blue Shuffle | 1661B - Getting Zero |
1661A - Array Balancing | 1649B - Game of Ball Passing |
572A - Arrays | 1455A - Strange Functions |
1566B - MIN-MEX Cut | 678C - Joty and Chocolate |
1352E - Special Elements | 1520E - Arranging The Sheep |
1157E - Minimum Array | 1661D - Progressions Covering |
262A - Roma and Lucky Numbers | 1634B - Fortune Telling |
1358A - Park Lighting | 253C - Text Editor |
365B - The Fibonacci Segment | 75A - Life Without Zeros |